The generator matrix

 1  0  1  1  1 X^2+X+2  1  1  X  1  1 X^2+2  1  1  2  1  1 X^2+X  1  1 X^2  1  1 X+2  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  0 X^2  1
 0  1 X+1 X^2+X+2 X^2+1  1  X X^2+X+1  1 X^2+2  3  1  2 X+1  1 X^2+X X^2+3  1 X+2 X^2+X+3  1 X^2  1  1 X^2  2 X^2+X+2  2  X X^2+2 X+2 X^2+2 X^2+X X+1 X+3 X^2+1 X^2+1 X^2+X+3 X^2+X+3  3  3  0 X^2+X  0 X+2  0 X^2+X+2  1  1  X  0
 0  0 X^2 X^2+2  2 X^2 X^2 X^2+2 X^2+2  2  0  2 X^2  0 X^2  0 X^2  0  2  2 X^2+2 X^2+2 X^2+2  2 X^2 X^2+2  2  2 X^2+2 X^2  0  0 X^2  2 X^2+2  0 X^2+2 X^2  0 X^2  2 X^2+2  2  2 X^2+2 X^2  0  2 X^2+2 X^2+2  0

generates a code of length 51 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+20x^48+302x^49+136x^50+160x^51+103x^52+246x^53+14x^54+28x^55+12x^56+1x^66+1x^78

The gray image is a code over GF(2) with n=408, k=10 and d=192.
This code was found by Heurico 1.16 in 0.078 seconds.